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Extra-column dispersion of macromolecular solutes in
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Abstract

A set of dextran standards was used to study the extra-column dispersion in conventional chromatographic equipment at a broad range of
molecular weights, different mobile phase flow rates and connecting tube lengths and diameters. All known correlations for the tube dispersion
at laminar flow, including those for short tubes, overestimated the values of the variance of the outlet concentration signal. The difference
increased with the solute molecular weight and the flow rate. It was assumed that the discrepancy was due to the effect of natural convection
invoked by the density differences of the injected dextran solutions and water. A suitable approximation of the relative band spreading was
suggested in a form of a power function of the Reynolds and Schmidt numbers. A significant decrease of the dispersion was observed when
the chromatography tubing was coiled into a circle. This decrease was successfully predicted combining the existing correlations for long
coiled tubes and short straight tubes.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The phenomenon of solute dispersion in connecting
tubing and auxiliary devices such as injection valves and
detectors has been of considerable interest for the optimi-
sation of the design of analytical equipment[1–6]. The
quantification of the extra-column dispersion can be of im-
portance also for a correct estimation of molecular weight
distribution in size-exclusion chromatography or for the
dynamic modelling of chromatographic separations.

The experimental investigation of spreading of injected
solute pulse in different parts of chromatographic systems,
where the major role played the connecting tubing, has
been a subject of numerous studies in the field of liquid
chromatography[5,7–18]. The fundamentals of the theory
of solute dispersion in tubes of circular cross-section were
laid down by Taylor for both laminar[19] and turbulent
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flows [20]. He derived and experimentally verified a simple
equation suitable for the calculation of the axial dispersion
coefficient that characterized a symmetrical spread of solute
around the central point travelling with the mean flow veloc-
ity along the tube. Aris extended the Taylor equation for the
cases where the molecular diffusion in the axial direction
could not be neglected[21]. The regions of the validity of the
Taylor–Aris equation and utilization of the concept of axial
dispersion were analyzed in several publications[22–24].

Aris also proved that the solute concentration tended to
have a form of normal distribution[21]. Levenspiel de-
rived a simple relationship between the variance of the
concentration response function and the axial dispersion
coefficient[25]. This relationship combined with the orig-
inal Taylor equation has often been applied for the estima-
tion of the extra-column dispersion in connecting tubing
[11,12,14,16,17,26–28].

The most significant limitation of the Taylor–Aris equa-
tion is that it can only be applied to longer times (or tubes)
when the molecular diffusion extinguished the radial con-
centration profiles. Although some analytical equations for
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short times were presented in a later period[29,30], the
problem was mostly treated by the numerical solution of
the characteristic equation (Eq. (1)) [23,24,31–35]. Based
on the numerical simulations, simple empirical equations
were suggested for a correlation of dispersion in short tubes
[24,31,36], which were also verified experimentally by the
same authors[31,36]. Other simple empirical equations were
designed directly from experimental data[3,23].

Several other phenomena pertinent to the dispersion in
short tubes that were studied theoretically and/or experimen-
tally include: the dispersion of rectangular pulse[36,37],
occurrence of double peaks[24,31,36,37], additivity of the
variances of connected tubes[31,33]and analysis of natural
convection due the density differences between the injected
and displacing fluids[38–40].

Several studies have demonstrated that the coiling of
a tube into a helix decreased the dispersion compared to
a straight tube of the same length. The decrease depen-
dended on the flow character, tube curvature and solute size
[3,13,31,41,42]. The effect of these factors is included in a
characteristic criterion, the product of the Dean and Schmidt
numbers (seeSection 2). With the increase of this product
above a critical value, it is first observed a secondary flow,
then a flow divided into two equal parallel halves is devel-
oped and finally the formation of a linear velocity profile
occurs accompanied by a dramatic (more than 100 times)
decrease of the variance compared to the straight tube.

The bulk of the dispersion studies was carried out with
low-molecular solutes. The publication of Ouano and
Biesenberger was one of the very few where the short-tube
dispersion of a macromolecular solute was treated[43].
Besides observing double peaks at certain conditions, they
found that the mean residence times and variances of dif-
ferent polystyrenes were reduced compared to those of
low-molecular solutes. They explained it by the formation
of a virtual two-phase flow due to the formation of polymer
clusters.

Low values of diffusion coefficients of macromolecular
solutes significantly influence their spread in the flowing
stream of liquid. The extra-column dispersion is thus a sig-
nificant phenomenon in size-exclusion chromatography ei-
ther in standard or inverse mode[28,44]. Dextrans, which
provide a homologous set of polymers in a broad range
of molecular weights, are the most common polymer stan-
dards in aqueous-phase chromatography. The objective of
this study was to investigate the dextran dispersion in chro-
matography tubing in a broad range of conditions, which
included besides the different molecular weight of dextrans,
the variation of volumetric flow rate, length and diameter of
the measuring tube and injected volume.

2. Theory

The analysis of dispersion of injected solute at laminar
flow in the tubes of circular cross-section is based on a

general mass balance equation,
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wherecs is the solute concentration;D the diffusion coeffi-
cient;R the tube radius;t the time;u0 the tube axis flow ve-
locity; r andx the radial and axial co-ordinates, respectively.
The diffusion coefficient is typically considered to be con-
stant which may be far from the reality in the case of macro-
molecular solutes even in dilute solutions (seeSection 3.1).
The most common simplification ofEq. (1) is achieved
through the assumption that the molecular diffusion in the
radial direction can fully eliminate the concentration gradi-
ents created by convection. The two-dimensional equation
is then transformed into the following one-dimensional one,
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In Eq. (2), u is the mean flow velocity andDL denotes the
axial dispersion coefficient that is defined byEq. (3) [21].

DL = D+ u2d2

192D
(3)

whered is the tube diameter. In liquid systems, the value of
D is almost always much smaller than the second term on
the right-hand side ofEq. (3)since the influence of molecu-
lar diffusion in the axial co-ordinate is negligible compared
to that of convective flow.

The disappearance of radial concentration profiles is
achieved only after a sufficiently long time after the injec-
tion of solute[19]. This means if the solute concentration
is measured locally in a certain distance from the injection
this should be sufficiently long so thatEq. (2) could be
valid [19,25]. The best quantity for the assessment of the
validity of Eq. (2) is the dimensionless time:

τ = Dtr
R2

(4)

wheretr is the mean residence time defined as the ratio of the
tube volume and the volumetric flow rate of mobile phase.
Ananthakrishnan et al.[23] showed that for solutes with the
product of Reynolds number (Re = duρ/µ; whereρ is the
density andµ the dynamic viscosity) and Schmidt number
(Sc = µ/ρD) higher than 200 (valid for most mobile phases
in liquid chromatography),τ should be higher than 1.6. In
fact, the value of the critical time in the mentioned article
was 0.8 but this was related to the axis not the mean velocity.

For a solute injection approximated by the Dirac
δ-function, analytical solutions ofEq. (2) were obtained
[19,25]. The following simple expression was derived for
the varianceσ2 of the normalized (to the amount of solute
per tube volume ) outlet concentration[25]:
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L denotes here the tube length andPe the axial Péclet number
which is a commonly used measure of axial dispersion in
chromatography and reaction engineering[45,46]. The first
term in the squared brackets ofEq. (5)becomes negligible
for long tubes (Pe > 200 which corresponds toτ > 6.25)
and the normalized concentration function gets the form of
the Gaussian curve[25]. If the axial dispersion coefficient
is then expressed from the simplified form ofEq. (3), an
equation is obtained which is commonly referred to as the
Taylor equation:

σ2

t2r
= ud2

96LD
(6)

It is well known that the variance calculated from the Taylor
equation is the same as the one obtained from the theoretical
plate theory where the number of theoretical platesn =
Pe/2.

Although Eq. (6) has commonly been used for the es-
timation of extra-column dispersion in chromatography
[11,12,14,16,17,26–28], its use may be problematic due to
short lengths of chromatographic connecting tubes. Two
empirical equations suitable for the description of disper-
sion in short tubes were adopted from literature in this
study. Atwood and Golay suggested an equation suitable
for the elution curves of the slice content type (A detector
signal proportional to the solute content in the whole tube
cross-section)[31]. It had a form:

σ2

t2r
= (1 + 8/na)

−2/7

na
, na ≥ 0.01 (7)

where

na = 96LD

ud2
(8)

is the apparent number of theoretical plates calculated from
the Taylor equation. An equation suggested by Kolev[3] for
τ < 0.6 was rearranged into the following form:

σ2

t2r
= 1.314naτ

0.455 (9)

The characteristic dimensionless parameter, the Dean num-
ber De, is introduced for the assessment of the decrease of
dispersion in coiled tubes,

De = Re
√
ϕ (10)

whereϕ is the ratio of the diameters of tube and coil. The
product of Schmidt and squared Dean numbers defines sev-
eral regions of the effect of centrifugal forces on the char-
acter of solute dispersion. Since the values ofDe2Sc in our
study varied from 103 to 5 × 105, we used a relationship
presented by Leclerc et al.[47]:

φ = 0.75Re−1/3 (11)

whereφ is the ratio of the variances in coiled and straight
(calculated from the Taylor equation) tubes of the same
length and diameter.

3. Experimental

3.1. Solutes and their physical properties

A homologous set of dextrans (Fluka Chemika AG,
Buchs, Switzerland and Sigma, St. Louis, MO, USA) with
approximate relative molecular weights 1500; 6000; 9300;
17,500; 40,000; 60,000; 70,000; 110,000; 200,000; 500,000;
and 2,000,000 were used as macromolecular solutes. The
polydispersity index of individual solutes varied from 1.4 to
2.3. KNO3 of analytical grade was used in the experiments
with a low-molecular solute. Re-distilled water was used
for the preparation of injection samples in which the solute
concentration was always 10 g/l.

The dynamic viscosity of dextran solutions,µ, was cal-
culated from the following relationship:

µ = [η]cµw + µw (12)

wherec is the dextran concentration;µw the water viscosity;
and [η] the intrinsic viscosity, which was expressed as the
following function of the relative molecular weightMr [48],

[η] = 0.243M0.42
r (13)

The dynamic viscosity of KNO3 solutions was taken to be
equal to that of water.

For the prediction of the diffusion coefficients of dextrans
at infinite dilution,D0, the following relationship was ap-
plied [49–51],

D0 = k1M
k2
r (14)

The coefficientsk1 = 4.78×10−9 m2 s−1 andk2 = −0.4409
were obtained by fitting 18 experimental values ofD0 se-
lected from different sources[49–56]. The mean error of the
fit was 3.8 × 10−12 m2 s−1. D0-values were applied in the
theoretical predictions used in theSections 4.2 and 4.4.

Different forms of the equations expressing the depen-
dence of diffusion coefficients in aqueous solutions,D, on
the dextran concentration have been reported[49–51,57].
These equations agreed on a general trend of the increase
of D with c and they provided the values which coincided
quite well at dextrans with lower molecular weights[49,50].
Somewhat larger discrepancies were found at dextrans with
the largest molecular weights but it was difficult to judge
on the quality of the data provided by different authors
[49,50,57]. The most comprehensive set of data was pre-
sented by Lebrun and Junter[50] who approximated them
with a straight-line concentration dependence in the form,

D = D0(1 + kDc) (15)

The coefficientkD was proportional to the molecular weight
of solute but it had different values for lower and higher
molecular-weight intervals (Table 1). If the values ofD for
1% solutions of dextrans were calculated, their relative in-
crease compared toD0 was from 10 to 350%. The values of
D were used as the reference values for the calculation of
Sc in theSection 4.3.
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Table 1
Parameters of the dependence of the coefficientkD in Eq. (15) on the
relative molecular weight in the formkD = A+ BMr [50]

A B

Mr < 105 11.17 7.65× 10−4

Mr > 105 62.58 9.59× 10−5

The diffusion coefficient of KNO3 at infinite dilution at
25◦C was 1.93× 10−9 m2 s−1 [58]. The influence of con-
centration was neglected in this case.

3.2. Injection experiments

All experiments with dextrans were performed in a stan-
dard chromatographic system without column consisting of
a HPLC pump (ECOM, Praha, Czech Republic) with two
heads, 6-port injection valve and differential refractometer
both from Knauer (Berlin, Germany). The capillary inside
the detector connecting the inlet with the detector cell was
0.9 m long with an inner diameter of 0.25 mm. The detector
cell had the diameter of 1 mm and it was 1.15 cm long with
the volume of 9�l. These components were connected with
teflon capillaries with the inner diameters of 0.5 or 0.25 mm
and the outer diameter of 1/16 of inch.

The mobile phase was re-distilled water. Experiments
were performed at a varying flow velocity, injected sam-
ple volume and length of measuring tube. Data were col-
lected using the chromatographic station CSW (DataApex
Ltd, Praha, Czech Republic). Each injection was repeated
three times and the mean values from these replicates were
used for presentation and further correlations.

In the first set of experiments, the solutions of dextrans of
different molecular weight were injected into systems with
the measurig tube lengthsLt equal to 0.35, 0.59, and 2 m
with the inner diameterdt of 0.5 × 10−3 m or with dt =
0.25 × 10−3 m andLt = 1.28 m. The injection loop tube
was 0.293 m long and had a diameter of 0.25 × 10−3 m
which corresponded to the volume of 14.4�l. In the second
set of experiments, a solution of single dextran with the
molecular weight of 70,000 was used. The measuring tube
with dt = 0.25 × 10−3 m had a length of 1.28 m whereas
the tube lengths of 0.35, 0.59, 2, and 4 m were used atdt =
0.5×10−3 m. The injection loop was made of the tube with
the diameter of 0.25×10−3 m and appropriate lengths which
resulted in the injected volumes of 14.4, 50, and 188�l,
respectively.

The volumetric flow rate of mobile phase varied from 0.1
to 1.5 ml min−1, which resulted in the values of the Reynolds
number from 2 to 60 in measuring tubes withdt = 0.5 ×
10−3 m or from 8.5 to 127.3 in tube withdt = 0.25×10−3 m.

The experiments with KNO3 (Mr = 101) were performed
using the HP 1081B Liquid Chromatograph equipped with
UV-Vis HP 1040A Detection System (2 nm resolution) and a
computer data acquisition system HP ChemStation (Hewlet
Packard, Palo Alto, CA). Two measuring tubes were used

to connect the injection valve with the detector; the first one
was 0.792 m long withdt = 0.5 × 10−3 m and the second
one 0.733 m long withdt = 0.25× 10−3 m. The capillary
inside the detector was 0.7 m long with an inner diameter of
0.3 mm. The volume of the detector cell was 4.5�l. The flow
rates were 0.5, 1 and 1.5 ml min−1 and the injected volume
of a solute was 20�l.

3.3. Evaluation of injection measurements

The response signal of the chromatographic systemS(t)
was used to calculate the residence time distribution function
E(t) (Eq. (16)), the mean residence timetr (Eq. (17)) and
the varianceσ2 (Eq. (18)).

E(t) = S(t)∫ ∞
0 S(t)dt

(16)

tr =
∫ ∞

0
tE(t)dt (17)

σ2 =
∫ ∞

0
t2E(t)dt − t2r (18)

The integration was performed by the chromatographic soft-
ware CSW version 1.7 (DataApex, Praha, Czech Repub-
lic). It was checked that the integral in the denominator of
Eq. (16)corresponds to the mass of injected solute calcu-
lated from the volume of the injection loop and dextran so-
lution concentration. The mean deviation of the difference
of these two values was 1.5% where the positive and neg-
ative values were essentially symetrically distributed. The
mean relative errors oftr, σ2, andt2r /σ

2 obtained from the
replicates were 1.6, 4.2, and 5.7%, respectively.

3.4. Theoretical predictions of tr and σ2

The experimental system between the sites of solute in-
jection and detection was formed by four parts: the injection
loop, measuring tube, detector capillary, and detector flow
cell. The following assumptions were made in order to esti-
mate the mean residence time and variance:

1. Both the residence time and variance were considered to
be additive and their values were obtained by the sum-
mation of the calculated values for each of the four parts.

2. The residence time in each part equalled to the ratio of
its volume and the volumetric flow rate of mobile phase,
except for the injection loop where a half of its volume
was used since the centre of the injected volume in zero
time was in the middle of the injection tube.

3. The variances in the measuring tube, detector capillary,
and flow cell were expressed from one of the equations
presented in the Theory (Eqs. (6), (7), (9), and (11)) using
the diffusion coefficients at infinite dilution.

4. The variance in the injection loop,σ2
i , was calculated

assuming the rectangular response function of the width
equal to 2tr,i , where the last quantity is the residence time



G. Grznárová et al. / J. Chromatogr. A 1040 (2004) 33–43 37

in the injection loop. The integration usingEq. (18)gave
the following simple relationship,

σ2
i = t2r,i

3
(19)

The assumption of the additivity may lead to a certain un-
derestimation of the total system variance since it is valid
only if a perfect mixing occurs at the transfer of the fluid
between two segments[31].

4. Results and discussion

The laminar-flow dispersion of solutes in tubes of circular
cross-section depends on the tube length and diameter, the
flow velocity, viscosity and density of bulk mobile phase,
and diffusion coefficient of solute. In order to investigate
the extra-column dispersion of macromolecular solutes at a
broad range of conditions, pulse injection experiments were
carried out at two different tube diameters, several measuring
tube lengths, flow rates and molecular weights of dextrans.

4.1. Effect of pulse size

Injection loops of different volume were used in order to
examine the effect of the relative size of input rectangular
pulse. The pulse-to-system volume ratio was changed from
about 1.7 to 60% by combining different measuring tubes
and injection loops and the solute was the dextran with the
relative molecular weight of 70,000. The variances of the
measured outlet concentration at individual tubes exhibited
a linear relationship both on the total system volume and
injected volume (Fig. 1). This corresponded well to the sim-
ulation results of Gill and Ananthakrishnan[37] who pre-
dicted the independence of the variance of the residence
time distribution on the pulse size up to the volume ratio of
40%. Moreover, the extrapolated value of the experimental
variance to the zero volume was very close to zero, which

Fig. 1. The variance vs. the injected volume in the system with the
capillary 1.28 m long at the following flow rates: (�) 0.1, (�) 0.25,
(�) 0.5, (
) 0.75, (�) 1, and (�) 1.5 ml min−1. At each flow rate, the
variances were related toσ2

ref, the variance in the system with the injected
volume of 14.4�l.

confirmed that, other effects, such as disturbances of veloc-
ity profiles in the connectors and locations of cross-section
changes or detector dynamics, had a negligible influence on
the overall extra-column dispersion.

The linear relationship of the variance on the injected
volume presented inFig. 1 indicated that the variances of
individual parts of chromatographic system were not addi-
tive as could be assumed if the variance were proportional to
the square-root of the injected volume[27]. From the latter
type of relationship in a system with column, Liu et al. were
able to make a deconvolution of the variance of the injection
device [27]. They found that the proportionality constant
between the variance,σ2, and squared mean residence time
in the injection loop,t2r,i , was about twice higher (0.72−0.8)
than that one calculated for the rectangular response func-
tion (Eq. (19)). When we plotted our experimental results
in the form of the dependence ofσ2 on t2r,i , we found that
the slope decreased with the injected volume. It went down
to about 0.35–0.4 when the injected volume was larger than
the volume of residual parts of the system. Obviously, the
variance in the injection loop was dominating in this case
and only slightly differed from the variance of the rectangu-
lar pulse. We therefore preferred to useEq. (19)for the cal-
culation of the variance of the injection loop. On the other
hand, the slope of the mentioned relationship increased at
lower injected volumes since a stronger influence of the
dispersion in the connecting tubes occured. All further ex-
periments presented below were made with the smallest
injection tube of the volume of 14.4�l. The injected volume
was then at maximum 11% of the total system volume. This
fraction also represents a maximum possible contribution
of the variance of the injection loop to the system variance.
Using Eq. (19), this contribution was below 3%. A similar
small impact on the dispersion had the detector cell which
was at maximum 7% of the system volume. So the main
two parts contributing to the dispersion were the measuring
tube and thermostatting detector capillary.

4.2. Residence time distribution
characteristics—experiments and theory

The experimental residence time distributions had a
form close to the normal distribution function only at the
lowest molecular weight dextrans when low flow rates
and longer tubes were used. The required tube length to
achieve the Gaussian function form significantly increased
with the flow rate and dextran molecular weight. A sim-
ple calculation showed that at the dextran with the relative
molecular weight of 2,000,000 and the highest flow rate of
1.5 ml min−1, the required length of the tube with the inner
diameter of 0.5 mm would be about 2 km.

Typical shapes of measured concentration signal in short
tubes are presented inFig. 2. At the lower flow rates,
the peaks had a character typical for short tubes, with
shouldering and signs of double peaks. At the higher flow
rates, the peaks were surprisingly sharp. The peaks were
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Fig. 2. Residence time distribution functionE(t) for the dextran with the
relative molecular weight of 70,000 in the measuring tube 0.35 m long
with dt = 0.5× 10−3 m at different flow rates. (1)F = 0.1 ml min−1, (2)
F = 0.25 ml min−1, (3) F = 0.75 ml min−1, and (4)F = 1.5 ml min−1.

asymmetrical with a steep onset that occurred at the time
very close to the value of 50% of the mean residence time.
It means that a significant portion of the solute traveled
through the system at the tube axis velocity.

The strong decrease of the relative experimental variance
of high-molecular solutes in short tubes with the flow rate is
illustrated inFig. 3. The experimental values,σ2, were com-
pared to the values calculated using the Taylor equation,σ2

T
(Eq. (6)). The ratio ofσ2 to σ2

T decreased from the values
of several tenths at the lowest flow rate of 0.1 ml min−1 to
several thousandths at the highest flow rates. On the other
hand, at comparable residence times of a low-molecular
solute, KNO3, the ratio decreased only to several tenths at
the highest flow rate and it was close to 1 at the lower flow
rates (Fig. 3). This is not surprising as the dimensionless
time τ approached here the critical value of 2 above which
the axial dispersion concept is valid (Fig. 4). On the con-

Fig. 3. Effect of flow rate on dispersion of high- and low-molecular solutes,
respectively, in short tubes. The experimental varianceσ2 is related to
the varianceσ2

T based on the Taylor equation (Eq. (6)). The presented
experiments with high-molecular solutes were made in a system with
Lt = 1.28 m anddt = 0.25× 10−3 m and the results for the following
molecular weights of dextrans are plotted: (�) 6000; (�) 17,500; (�)
70,000; (�) 200,000; (�) 500,000; (
) 2 × 106. The experiments with
KNO3 were conducted in a system with the measuring tube either 0.733 m
long with the diameterdt = 0.25 × 10−3 m (�) or 0.792 m long with
dt = 0.5 × 10−3 m (�).

Fig. 4. Experimental variance vs. the dimensionless time. The individual
symbols represent solutes with different molecular weights. (�) Dextran
(Mr = 1500), (�) dextran (Mr = 70,000), (�) dextran (Mr = 2,000,000)
and (�) KNO3. The experiments with dextrans were performed in systems
with with dt = 0.5 × 10−3 m and Lt = 0.35, 0.59, and 2 m and the
range of flow rates 0.1–1.5 ml min−1. The conditions of KNO3 dispersion
measurements were the same as those inFig. 3.

trary,τ-values of dextrans were much lower than 1 and they
were the lower the higherMr were.Fig. 4 also shows that
the experimental variances were approximately in the same
range for all dextrans used but the residence times needed to
achieve a fully developed axial dispersion flow were much
longer at larger dextrans due to their lower diffusivities.

A relatively small effect of dextran molecular weight on
the absolute value of variance is best illustrated inFig. 5.
The variance increased only about twice when the molecular
weight increased from 1500 to 2,000,000. On the other hand,
about 20-fold increase was predicted for the same range of
molecular weights from the Taylor equation.Fig. 5moreover
shows the comparison of the experimental data with the
predictions obtained from the equations designed for the
region ofτ < 2. It is however necessary to emphasize that the
Atwood–Golay (Eq. (7)) and the Kolev (Eq. (9)) equations
were experimentally validated only forna > 1 or τ > 0.05,
respectively. They are more-or-less equivalent only forna >

Fig. 5. Effect of dextran molecular weight on dispersion in short tubes.
The squares represent the values of variance measured in a system with
Lt = 0.35 m anddt = 0.5×10−3 m for the flow rate equal to 0.5 ml min−1.
The lines represent the variances calculated from different equations: (1)
Eq. (5), (2) Eq. (7), and (3)Eq. (9).
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3 orτ > 0.125 where the difference in the predicted variance
values is less than 20%. At lower values of the dimensionless
time, the differences between the two equations grows. The
Atwood–Golay equation predicted a much larger variance as
demonstrated inFig. 5 where theτ-values in the measuring
tube were in the interval from 1.5 × 10−3 to 2.5 × 10−2.
This equation was obviously not suitable for the description
of the experimental data.

The Kolev equation provided a much better estimate of
the experimental variance than the two previous equations.
At the dextran with the lowest molecular weight, the devia-
tion was less than 50% (Fig. 5). The discrepancies, however,
grew with Mr where the estimated variances in short tubes
were still several times higher than the experimental ones
(Fig. 5). Although the Kolev equation was not experimen-
tally verified for such short relative times as those used in
this study, it is useful to discuss the possible sources of the
discrepancies between the experimental and predicted val-
ues. As it was indicated at the end of theSection 3.4, the
convective character of dispersion in a connected short seg-
ments of the chromatographic system could lead to that the
total variance calculated by the summation of the variances
of individual segments could be under estimated but not
overestimated as happened here. Moreover, the variances of
the measuring tube were by far larger than the variances of
other parts so the error of the estimation of the total variance
should not be large.

The concentration dependence of viscosity and diffu-
sion coefficient could also play some role. As the values
of both quantities increase with the dextran concentration
they would have a mutually opposite effects. The viscos-
ity would enhance the dispersion and diffusion coefficient
would diminish it. We expect that the overall effect would
be a minor one since the injected solution was significantly
diluted in all cases and the velocity and concentration pro-
files would not be modified to such an extent that it would
explain the observed discrepancies.

Another factor that could contribute to the observed
reduction of the relative variance with the flow rate and
molecular weight was the action of natural convection. The
natural convection was caused by the density differences (up
to 0.3%) between the injected dextran solutions and water.
This conclusion qualitatively agrees well with the analysis
made by Reejhsinghani et al.[39]. As has been explained
by the mentioned authors, the density gradient invokes both
axial and radial mixing where the former effect enhances
dispersion and the latter one diminishes it. At certain condi-
tions (characterized by the values of the productRe andSc),
the two sources of natural convection eliminated each other
in the effect on the dispersion of injected solution.Fig. 5
shows that the elimination of natural convection effects
essentially happened at the dextran withMr = 1500.

Another well-documented observation in thin tubes was
that the effect of natural convection on dispersion was
observable only at short residence times (τ < 2) [39,43]
since the concentration gradients attenuated at longer times.

Fig. 6. Mean residence time vs. dextran molecular weight at
F = 0.1 ml min−1. The symbols represent the experimental values in a
tube with dt = 0.5 × 10−3 m of different lengths: (�) Lt = 0.35 m and
(�) Lt = 0.59 m. The lines represent the values calculated as the ra-
tio of the system volume and flow rate; — forLt = 0.35 and - - - - for
Lt = 0.59 m.

This complies again very well with our results presented in
Fig. 3 where the departure from the axial dispersion model
strongly increased at higher flow rates.

Further anomalies that could also have been connected
with the effect of natural convection were observed at
the experimental values of mean residence time,tr, evalu-
ated from the response function of the system (Eq. (17)).
Fig. 6 illustrates thattr-values at the lowest flow rate of
0.1 ml min−1 increased with the dextran molecular weight
approximately in the same proportion at two different tube
lengths. Moreover,Table 2shows that the mean residence
time was not inversely related to the flow rate as it would
be expected for an ideal longitudinal tube flow. The ratio of
the experimental and calculated values oftr decreased with
the increasing flow rate. This conclusion is compatible with
the observations made by Ouano and Biesenberger[43] that
were attributed to the effect of natural convection without an
analysis comparable to the one presented above for the solute
dispersion.

Table 2
The mean absolute and relative errors,δ̄ and δ̄r , respectively, of prediction
of tr at different flow rates and tube lengths

F (ml min−1) Lt (m) δ̄ (min) δ̄r

0.1 0.35 −0.233 −0.171
0.25 0.35 −0.039 −0.072
0.5 0.35 0.005 0.025
0.75 0.35 0.003 0.019
1 0.35 0.012 0.086
1.5 0.35 0.018 0.201
0.1 0.59 −0.398 −0.217
0.25 0.59 −0.074 −0.102
0.5 0.59 0.017 0.067
0.75 0.59 0.018 0.073
1 0.59 0.017 0.099
1.5 0.59 0.018 0.151

The mean of the differences between the experimental and calculated
values of tr was evaluated from the values obtained for dextrans with
different Mr .
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4.3. Empirical equation for prediction of dispersion

As has been presented above, no known equation could
reliably predict the variance of dextran solutes in our system.
For that reason, we suggested an empirical equation that was
used to fit the experimental data of dextran variance. The
empirical equation was designed on the basis of the Taylor
equation (Eq. (6)) that was rearranged into the following
form,

ReSc = 96
σ2

t2r

Lt

dt
(20)

The equation was then proposed in a form of the following
power function,

t2r

σ2
= a

Lt

dt
RebScc (21)

which is typical for the correlation of the axial Péclet number
in different systems. In order to account for the described
effect of natural convection at short residence times, the
dextran concentration of 1% was taken for the evaluation of
the quantities used inEq. (21).

The estimation of the parameters ofEq. (21) was per-
formed independently for each short measuring tube when
the data for different flow-rates and dextran molecular
weights were fitted simultaneously. The estimated parame-
ters and their 95% confidence intervals are given inTable 3.
The mean relative error oft2r /σ

2 varied in the individual se-
ries from 14.5 to 24.2%. Obviously, these accuracies are not
excellent but they are well compensated by the simplicity
of the correlation for a broad range of solute sizes when the
concentration effect on the solute viscosities and diffusivities
could not be considered in such a simple equation.Figs. 7
and 8illustrate the quality of the approximation of the ex-
perimental data usingEq. (21). Fig. 8contains also the data
for the KNO3 dispersion that were obtained in a different
chromatographic system and therefore they were not con-
sidered in fitting. It is evident that the extrapolation over
one order of magnitude of the Schmidt numbers provided a
quite good correspondence between the dispersion of high-
and low-molecular solutes in the short tubes, respectively.

Table 3shows that the highest accuracy of estimation was
achieved at the exponentc which defines the curvature of
the relationship oft2r /σ

2 versusSc at a constantRe. It is
significant that the value ofc at all three tubes was rather
close to−0.3. This result is in a good agreement with the
value of an exponent of the relationship of the width of

Table 3
Ninty-five percent confidence intervals of parameters ofEq. (21) for three different measuring tubes

Lt/dt Vt/Vs a b c δr

700 0.504 0.179± 0.170 −0.041± 0.063 −0.279± 0.009 0.200
1180 0.631 0.203± 0.246 6× 10−4 ± 8 × 10−4 −0.361± 0.111 0.242
5120 0.482 0.083± 0.065 −0.090± 0.052 −0.314± 0.074 0.145

Vt/Vs is the ratio of the volumes of measuring tube and system. The last column gives the mean relative error of the fitted quantity,t2r /σ
2.

Fig. 7. Effect of the Reynolds number on dextran dispersion in a system
with Lt = 1.28 m anddt = 0.25×10−3 m. The symbols represent different
relative molecular weights of dextrans: (�) 6000; (�) 9300; (�) 17,500;
(�) 40,000; (�) 60,000; (
) 70,000; (�) 110,000; (�) 200,000; (�)
500,000; (�) 2 × 106. The solid line represents the fit of the data with
Eq. (21)using the parameter values fromTable 3.

response in regard to diffusion coefficient equal to−0.36
that was achieved by Vanderslice et al.[36].

The higher error of the parameterb follows from that it
was very close to 0. The minimum influence of the Reynolds
number ont2r /σ

2, which is more clearly demonstrated in
Fig. 7, means that the change of the flow rate (mean resi-
dence time) had a negligible influence on the relative spread
of injected solute. This was probably the consequence of

Fig. 8. Effect of the Schmidt number on dextran dispersion in a system
with Lt = 0.35 m anddt = 0.5×10−3 m. The symbols represent different
flow rates: (�) 0.1 ml min−1, (�) 0.25 ml min−1, (�) 0.5 ml min−1, (�)
0.75 ml min−1, and (�) 1 ml min−1. The solid line represents the fit of
the data withEq. (21) using the parameter values fromTable 3. For
comparison, the data for the dispersion of KNO3 at the flow rate of
0.5 ml min−1 in a different chromatographic system (The conditions are
in the legend toFig. 3) are given (�).
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the combined effect of convective dispersion and natural
convection.

The smaller accuracy of the parametera is a consequence
of two factors. Firstly, it is the correlation with the exponent
c where a small change inc invokes a large change ina.
Secondly,a is basically an extrapolated value forRe = 1
andSc = 1. Since our Schmidt numbers were far away from
1, the accuracy of the estimate ofa had to be affected. It is
interesting that the first two values ofa in Table 3are quite
close especially when the uncertainties of their estimates
and different fractions of the system volumes of these two
tubes are considered. The third tube differed from the first
two ones in that it had only a half diameter. The value of the
parametera was also approximately only half which means
that the relative spread of the injected solute was larger in the
narrower tube. At the same flow rates, the mean residence
time in the narrower tube was about the same as that of the
first tube fromTable 3. It means that the value ofτ (Eq. (4))
in the tube with half diameter was about four times larger.
This implies that a stronger influence of axial dispersion and
lower impact of natural convection could be expected in the
narrower tube.

4.4. Dispersion in coiled tubes

The effect of tube coiling on solute dispersion was inves-
tigated using the single solute, dextran withMr = 70,000.
The measuring tubes with the length of 2 and 4 m were coiled
into the circles with the radius of 5 and 6 cm, respectively.
As has been explained in the Introduction and Theory, the
tube coiling invokes centrifugal forces that cause secondary
flow, which may result in a significant decrease of solute
dispersion compared to the flow in a straight tube. The ex-
perimental values of the variances at different flow rates in
both tubes are plotted inFig. 9. Although the dimensionless
times were here naturally higher than in the case of short,
straight tubes, they were still smaller than 1. A fully devel-
oped axially dispersed flow was achieved neither in these

Fig. 9. Dispersion of dextran withMr = 70,000 in coiled tubes with
dt = 0.5 × 10−3 m. The symbols belong to different tube lengths—(�)
(Lt = 2 m), (�) (Lt = 4 m). The lines represent the values of the variance
calculated as the product of the ratioφ (Eq. (15)) and the variance in
straight tube (Eq. (13))—dashed line (Lt = 2 m), solid line (Lt = 4 m).

cases although the tube length-to-diameter ratio reached a
value of 8000.

A calculation procedure of the variance was based on a
simple equation of Leclerc et al. (Eq. (11)) [47] that ex-
presses the ratio of the variances in the coiled and straight
tubes as a simple inverse third root function of the Reynolds
number. SinceRe varied in these experiments from about
4 to 64, the corresponding values of theφ-ratio were ap-
proximately in the interval from 0.46 to 0.19. As the tubes
were too short for that the Taylor equation could be used to
calculate the solute variance in the straight tube, the Kolev
equation (Eq. (9)) was applied for that purpose. Multiplying
this value with the correspondingφ-value, the variance in
coiled tube was obtained. The calculated values of this vari-
ance are plotted inFig. 9. The differences in the variances at
the same dimensionless times for the two tube lengths were
about 20–30% but their lines almost overlap in the scale
used inFig. 9. Obviously, a very good coincidence between
the experimental and calculated variances was found except
for one experiment, at the largest flow rate. This discrepancy
could again be caused by the effect of natural convection.

5. Conclusions

The dispersion of macromolecular solutes with a broad
range of molecular weights in the connecting tubes of
standard chromatographic equipment has been the main
objective of this paper. The set of dextrans was chosen as
they are used as calibration standards in aqueous-phase
size-exclusion chromatography. The implications of this
work may, of course, be significant for other types of
laboratory-scale chromatography employing high-molecular
compounds as well.

At dextrans, the deviation from the axial dispersion model
strongly increased with the molecular weight and flow rate
when the experimental variance was up to thousand times
smaller than the value calculated from the Taylor equation.
The measured concentration signals had irregular shapes,
typical for the early phases of the development of concen-
tration profile after the pulse injection. The elimination of
radial concentration profiles, which is characteristic for the
axial dispersion flow, occurred in conventional chromato-
graphic equipment only at KNO3.

The experimental variances of dextrans, in general, did not
comply with the equations designed for short tubes either.
The most probable explanation for this discrepancy was the
effect of natural convection that was caused by the density
difference, albeit rather small one, between the injected so-
lution and water. In spite of that the density difference was
about the same at all dextrans, the residence time distribu-
tions differed significantly at the same conditions. This was
an outcome of the interplay of natural convection, radial dif-
fusion, and axial forced convection that was strongly affected
by the values of diffusivities and viscosities, which depended
on the molecular weight and concentration of dextrans.
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A strong concentration dependence of the diffusivities and
viscosities was a considerable complication for a good pre-
diction of the dispersion of high-molecular solutes. Using
the values of the initial concentration in the injected pulse, a
relatively simple equation was designed that provided quite a
good prediction of the variance of dextran concentration dis-
tribution at a specified configuration of the chromatographic
system. It was found that the normalized variance, related
to the squared mean residence time, depended mainly on
the transport properties of the dextran solutions and only to
lesser extent on the flow properties.

Besides the connecting tubing, other significant sources
of extra-column dispersion were the thermostatted detector
tube and in some experiments to lesser extent also the in-
jection loop. An exact deconvolution of the experimental
variance of concentration signal was however not the sub-
ject of investigation. It would be anyway difficult to achieve
it without CFD simulations incorporating the momentum
and mass balances for the connected parts of the chromato-
graphic system.

Some experiments were made also at longer tubes that
were coiled into a circle of a relatively low diameter. The
theory predicts an existence of secondary centrifugal flow
that results in a significant decrease of the variance of
dispersed solute. The variance can be predicted as a prod-
uct of a dimensionless parameter, which is the function
of the Reynolds, Dean, and Schmidt numbers, and of the
variance in a straight tube of the same length. Although
previous applications of this approach were reported only
for low-molecular solutes and long tubes where the Taylor
equation could be applied, a very good coincidence with the
experimental data was achieved in this case using the Kolev
equation for the dispersion in short tubes. This implies
that the bends and curvatures of chromatography tubing
can result in a further significant decrease of dispersion of
macromolecular solutes.
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Nomenclature

a, b, c parameters ofEq. (21)
cs solute concentration (g dm−3)
d tube diameter (m)
dt measuring tube diameter (m)
De Dean number,Eq. (10)
D0 diffusion coefficient at the infinite dilution

(m2 s−1)
D diffusion coefficient (m2 s−1)
DL dispersion coefficient (m2 s−1)

E(t) residence time distribution function
F flow rate (ml min−1)
k1, k2 parameters ofEq. (14)
kD parameter ofEq. (15)(dm3 g−1)
L tube length (m)
Lt measuring tube length (m)
Mr relative molecular weight
n number of theoretical plates
na apparent number of theoretical plates,Eq. (8)
Pe axial Ṕeclet number (uL/DL)
r radial co-ordinate (m)
R measuring tube radius (m)
Re Reynolds number (duρ/µ)
S detector signal
Sc Schmidt number (µ/ρD)
t time (min)
tr the mean residence time (min)
tr,i the mean residence time in injection loop

(min)
u mean flow velocity (m s−1)
u0 tube axis flow velocity (m s−1)
Vi injected volume (m3)
Vs volume of the chromatographic system (m3)
Vt volume of measuring tube (m3)
x axial co-ordinate (m)

Greek letters
δ̄, δ̄r absolute and relative errors
φ ratio of diameters of tube and coil
[η] intrinsic viscosity (cm−3 g−1)
ϕ ratio of variances in coiled and straight tubes
µ dynamic viscosity (Pa s)
µw dynamic viscosity of water (Pa s)
ρ density (kg m−3)
σ2 variance (min2)
σ2
i variance in injection loop,Eq. (19)(min2)
σ2

T variance calculated fromEq. (6)(min2)
τ dimensionless time,Eq. (4)
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